Artificial Intelligence dan Kardiologi: A Mini Review

Sidhi Laksono, Wincent Candra

Abstract


Dalam diagnosis dan terapi pasien dengan gangguan jantung masih terdapat keterbatasan-keterbatasan tertentu. Teknologi medis berbasis artificial intelligence berkembang dengan pesat sebagai solusi yang dapat diterapkan untuk praktik klinis. Artificial intelligence sendiri merupakan istilah yang digunakan dalam pemanfaatan teknologi dan komputer untuk mensimulasikan perilaku cerdas dan pemikiran kritis yang sebanding dengan manusia. Saat ini, hanya pengaturan tertentu dalam praktik klinis yang mendapat manfaat dari penerapan artificial intelligence. Artificial intelligence menawarkan solusi akan beberapa permasalahan pada kardiologi. Artificial intelligence berpotensi meningkatkan kualitas pelayanan kedokteran pada bidang kardiologi. Perlu adanya standar tertentu dalam manajemen kedokteran berbasis artificial intelligence.


Keywords


Artificial Intelligence, Cardiac Diagnostic, Cardiac Examination, Cardiology, Deep Learning, Machine Learning

Full Text:

PDF

References


Amisha, Malik P, Pathania M, Rathaur V. Overview of artificial intelligence in medicine. J Family Med Prim Care. 2019;8(7):2328. doi:10.4103/jfmpc.jfmpc_440_19

Briganti G, Le Moine O. Artificial Intelligence in Medicine: Today and Tomorrow. Front Med. 2020;7:27. doi:10.3389/fmed.2020.00027

Buch VH, Ahmed I, Maruthappu M. Artificial intelligence in medicine: current trends and future possibilities. Br J Gen Pract. 2018;68(668):143-144. doi:10.3399/bjgp18X695213

Davis A, Billick K, Horton K, et al. Artificial Intelligence and Echocardiography: A Primer for Cardiac Sonographers. Journal of the American Society of Echocardiography. 2020;33(9):1061-1066. doi:10.1016/j.echo.2020.04.025

Bergamini M, Iora PH, Rocha TAH, et al. Mapping risk of ischemic heart disease using machine learning in a Brazilian state. Tolkacheva EG, ed. PLoS ONE. 2020;15(12):e0243558. doi:10.1371/journal.pone.0243558

Goto S, Mahara K, Beussink-Nelson L, et al. Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms. Nat Commun. 2021;12(1):2726. doi:10.1038/s41467-021-22877-8

Beyar R, Davies JE, Cook C, Dudek D, Cummins PA, Bruining N. Robotics, imaging, and artificial intelligence in the catheterisation laboratory. EuroIntervention. 2021;17(7):537-549. doi:10.4244/EIJ-D-21-00145

Mahler SA, Riley RF, Hiestand BC, et al. The HEART Pathway Randomized Trial: Identifying Emergency Department Patients With Acute Chest Pain for Early Discharge. Circ: Cardiovascular Quality and Outcomes. 2015;8(2):195-203. doi:10.1161/CIRCOUTCOMES.114.001384

Burris AC, Boura JA, Raff GL, Chinnaiyan KM. Triple Rule Out Versus Coronary CT Angiography in Patients With Acute Chest Pain. JACC: Cardiovascular Imaging. 2015;8(7):817-825. doi:10.1016/j.jcmg.2015.02.023

Hoffmann U, Truong QA, Schoenfeld DA, et al. Coronary CT Angiography versus Standard Evaluation in Acute Chest Pain. N Engl J Med. 2012;367(4):299-308. doi:10.1056/NEJMoa1201161

Martin SS, Mastrodicasa D, van Assen M, et al. Value of Machine Learning–based Coronary CT Fractional Flow Reserve Applied to Triple-Rule-Out CT Angiography in Acute Chest Pain. Radiology: Cardiothoracic Imaging. 2020;2(3):e190137. doi:10.1148/ryct.2020190137

Seetharam K, Shresthra S, Mills JD, Sengupta PP. Artificial Intelligence in Nuclear Cardiology: Adding Value to Prognostication. Curr Cardiovasc Imaging Rep. 2019;12(5):14. doi:10.1007/s12410-019-9490-8

Arsanjani R, Xu Y, Dey D, et al. Improved Accuracy of Myocardial Perfusion SPECT for the Detection of Coronary Artery Disease Using a Support Vector Machine Algorithm. J Nucl Med. 2013;54(4):549-555. doi:10.2967/jnumed.112.111542

Arsanjani R, Xu Y, Dey D, et al. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J Nucl Cardiol. 2013;20(4):553-562. doi:10.1007/s12350-013-9706-2

Arsanjani R, Dey D, Khachatryan T, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol. 2015;22(5):877-884. doi:10.1007/s12350-014-0027-x

Haro Alonso D, Wernick MN, Yang Y, Germano G, Berman DS, Slomka P. Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning. J Nucl Cardiol. 2019;26(5):1746-1754. doi:10.1007/s12350-018-1250-7

Betancur J, Otaki Y, Motwani M, et al. Prognostic Value of Combined Clinical and Myocardial Perfusion Imaging Data Using Machine Learning. JACC: Cardiovascular Imaging. 2018;11(7):1000-1009. doi:10.1016/j.jcmg.2017.07.024

Kasprzak JD, Pawlowski J, Peruga JZ, Kaminski J, Lipiec P. First-in-man experience with real-time holographic mixed reality display of three-dimensional echocardiography during structural intervention: balloon mitral commissurotomy. European Heart Journal. Published online April 12, 2019. doi:10.1093/eurheartj/ehz127

Kasprzak JD, Witowski J, Pawlowski J, Peruga JZ, Złahoda-Huzior A. Percutaneous patent ductus arteriosus closure using intraprocedural mixed reality visualization of 3D computed tomography angiography data: first-in-man experience. European Heart Journal - Cardiovascular Imaging. 2019;20(7):839-839. doi:10.1093/ehjci/jez008

Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature. 2018;555(7697):487-492. doi:10.1038/nature25988

Shrestha S, Sengupta PP. Machine learning for nuclear cardiology: The way forward. J Nucl Cardiol. 2019;26(5):1755-1758. doi:10.1007/s12350-018-1284-x




DOI: https://doi.org/10.33854/heme.v4i2.964

DOI (PDF): https://doi.org/10.33854/heme.v4i2.964.g398

Refbacks

  • There are currently no refbacks.


Creative Commons License   Health and Medical Journal This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.