Peranan Protein Circulating FAM19A5 sebagai Faktor Ateroprotektif terhadap Proliferasi dan Migrasi Vascular Smooth Muscle Cell

Prima Adelin, Rahma Triyana

Abstract


Obesitas merupakan penyakit metabolik yang telah mencapai proporsi epidemi. Salah satu penyakit terkait obesitas adalah Penyakit Arteri Koroner / Coronary Artery Disease (CAD)melalui suatu proses aterosklerosis. Patogenesis CAD merupakan suatu proses yang kompleks mencakup kombinasi dari adanya disfungsi endotel, penumpukan lipid di tunika intima, teraktivasinya respons imun, dan proliferasi dan migrasi sel otot polos vascular/ Vascular Smooth Muscle Cell (VSMC). VSMC berperan pada terbentuknya imunitas terhadap aterosklerosis salah satunya melalui mekanisme melalui pembentukan artery tertiary lymphoid organs (ATLOs). Family with sequence similarity 19 member A5 (FAM19A5) merupakan sitokin baru yang terutama diekpresikan terutama di otak dan adiposity. Peranan FAM19A5 dalam meregulasi homeostasis kardiovaskuler yaitu melalui mekanisme endokrin atau parakrin. FAM19A5 yang dihasilkan dari adiposit sehat akan berikatan dengan sphingosine-1 phosphate receptor 2 (SIPR2) pada sel otot polos vaskuler yang akan menghambat proliferasi dan migrasi VSMC melalui molekul sinyaling G-12/13 dan RhoA.


Keywords


Ateroprotektif, CAD, FAM19A5, Vascular smooth muscle cell

Full Text:

PDF

References


. Aktar N, Qureshi NK, Ferdous HS. Obesity: A Review of Pathogenesis and Management Strategies in Adult. Delta Med Coll J. 2017;5(1):35–48.

. Galindo QFBAI de la C, Benítez JGS, Avila EM. Adiponectin: Obesity and development of different diseases. Annu Res Rev Biol. 2017;17(1):1–11.

. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982–3021.

. Aydin S, Ugur K, Aydin S, Sahin İ, Yardim M. Biomarkers in acute myocardial infarction: Current perspectives. Vasc Health Risk Manag. 2019;15:1–10.

. Villarroya F, Cereijo R, Gavaldà-Navarro A, Villarroya J, Giralt M. Inflammation of brown/beige adipose tissues in obesity and metabolic disease. J Intern Med. 2018;284(5):492–504.

. Wang Y, Chen D, Zhang Y, Wang P, Zheng C, Zhang S, et al. Novel adipokine, FAM19A5, inhibits neointima formation after injury through sphingosine-1-phosphate receptor 2. Circulation. 2018;138(1):48–63.

. Hu D, Yin C, Luo S, Habenicht AJR, Mohanta SK. Vascular smooth muscle cells contribute to atherosclerosis immunity. Front Immunol. 2019;10(MAY).

. Mussbacher M, Schossleitner K, Kral-Pointner JB, Salzmann M, Schrammel A, Schmid JA. More than Just a Monolayer: the Multifaceted Role of Endothelial Cells in the Pathophysiology of Atherosclerosis. Curr Atheroscler Rep [Internet]. 2022;24(6):483–92. Available from: https://doi.org/10.1007/s11883-022-01023-9

. Brozovich F V., Nicholson CJ, Degen C V., Gao YZ, Aggarwal M, Morgan KG. Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev. 2016;68(2):476–532.

. Grootaert MOJ, Moulis M, Roth L, Martinet W, Vindis C, Bennett MR, et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res. 2018;114(4):622–34.

. Bennett MR, Sinha S, Owens GK. Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res. 2016;118(4):692–702.

. Shankman L, Alencar F, Haskins RM, Swiatlowska P, Newman AAC, Owens GK. KLF4 Dependent Phenotypic Modulation of SMCs Plays a Key Role in Atherosclerotic Plaque Pathogenesis Laura. 2015;21(6):628–37.

. Cherepanova OA, Gomez D, Shankman LS, Swiatlowska P, Williams J, Sarmento OF, et al. Activation of the ESC pluripotency factor OCT4 in smooth muscle cells is atheroprotective. 2016;22(6):657–65.

. Majesky MW, Horita H, Ostriker A, Lu S, Regan JN, Bagchi A, Dong XR, Poczobutt, Nemenoff RA, Mary, WeiserShantanam S, MUELLER. Differentiated Smooth Muscle Cells Generate a Subpopulation of Resident Vascular Progenitor Cells in the Adventitia Regulated by KLF4. Circ Res. 2018;120(2):139–48.

. Akhavanpoor M, Gleissner CA, Akhavanpoor H, Lasitschka F, Doesch AO, Katus HA, et al. Adventitial tertiary lymphoid organ classification in human atherosclerosis. Cardiovasc Pathol [Internet]. 2018;32:8–14. Available from: https://doi.org/10.1016/j.carpath.2017.08.002

. Hu D, Mohanta SK, Yin C, Peng L, Ma Z, Srikakulapu P, et al. Artery Tertiary Lymphoid Organs Control Aorta Immunity and Protect against Atherosclerosis via Vascular Smooth Muscle Cell Lymphotoxin β Receptors. Immunity [Internet]. 2015;42(6):1100–15. Available from: http://dx.doi.org/10.1016/j.immuni.2015.05.015

. Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front Physiol. 2020;11(October):1–32.

. Wesolek A, Skoracka K, Skrypnik K, Suliburska J, Bogdanski P, Szulinska M, et al. Assessment of Progranulin and Fam19a5 Protein Blood Levels in Patients With Metabolic Syndrome. J Physiol Pharmacol. 2022;73(1):126–36.

. Anggraini, D., & Hasni, D. (2021). Early Detection of Hypercholesterolemia in the Elderly. Jurnal Abdimas Saintika, 3(2), 7-12.

. Lee Y Bin, Hwang HJ, Kim JA, Hwang SY, Roh E, Hong SH, et al. Association of serum FAM19A5 with metabolic and vascular risk factors in human subjects with or without type 2 diabetes. Diabetes Vasc Dis Res. 2019;16(6):530–8.

. Kazuto nakamura, Jose J fuster KW. Adipokines: A link between obesity and cardiovascular disease. J cardiol. 2014;63(4):250–9.

. Zarzour A, Kim HW, Weintraub NL. Understanding obesity-related cardiovascular disease: It’s all about balance. Circulation. 2018;138(1):64–6.

. Oktabelia, L., & Anggraini, D. (2022). Hubungan Kadar Glukosa Darah Puasa Dengan Troponin I Pada Pasien Infark Miokard Akut. An-Nadaa: Jurnal Kesehatan Masyarakat (e-Journal), 9(2), 215-221.

. Adada M, Canals D, Hannun YA, Obeid LM. Sphingosine-1-phosphate receptor 2. FEBS J. 2013;280(24):6354–66.

. Panta CR, Ruisanchez É, Móré D, Dancs PT, Balogh A, Fülöp Á, et al. Sphingosine-1-phosphate enhances α1-adrenergic vasoconstriction via S1P2–G12/13 –ROCK mediated signaling. Int J Mol Sci. 2019;20(24):1–15.

. Takashima SI, Sugimoto N, Takuwa N, Okamoto Y, Yoshioka K, Takamura M, et al. G12/13 and Gq mediate S1P2-induced inhibition of Rac and migration in vascular smooth muscle in a manner dependent on Rho but not Rho kinase. Cardiovasc Res. 2008;79(4):689–97.

. Gao S, Zhao D, Wang M, Zhao F, Han X, Qi Y, et al. Association Between Circulating Oxidized LDL and Atherosclerotic Cardiovascular Disease: A Meta-analysis of Observational Studies. Can J Cardiol [Internet]. 2017;33(12):1624–32. Available from: https://doi.org/10.1016/j.cjca.2017.07.015

. Wei C, Liu Y, Xing E, Ding Z, Tian Y, Zhao Z, et al. Association Between Novel Pro- and Anti- Inflammatory Adipocytokines in Patients with Acute Coronary Syndrome. Clin Appl Thromb. 2022;28.

. Anggraini, D. (2020). Risk factors of cardiovascular disease in elderly in Guguak Kabupaten 50 Kota, West Sumatera, Indonesia. Human Care Journal, 5(1), 348-351.

. Yari FA, Shabani P, Karami S, Sarmadi N, Poustchi H, Bandegi AR. Circulating levels of FAM19A5 are inversely associated with subclinical atherosclerosis in non-alcoholic fatty liver disease. 2021;1–7.




DOI: https://doi.org/10.33854/heme.v5i3.1287

Refbacks

  • There are currently no refbacks.


Creative Commons License   Health and Medical Journal This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.