The Role of Vitamin D in Immune Balance and Inflammation

Kurnia Maidarmi Handayani, Widia Sari, Ghaniyyatul Khudri, Alief Dhuha

Abstract


Vitamin D, traditionally known for its role in bone health, is increasingly recognized as a crucial regulator of immune balance and inflammation. This review explores the mechanisms by which vitamin D influences both innate and adaptive immune responses, with a focus on immune cells like macrophages, dendritic cells, T cells, and B cells. Vitamin D, through its active form, calcitriol, modulates immune cell function by binding to the Vitamin D receptor (VDR), which impacts cytokine production and inflammatory pathways. Notably, vitamin D promotes anti-inflammatory effects by shifting immune responses towards a regulatory phenotype, reducing pro-inflammatory cytokines while enhancing anti-inflammatory signals. This regulatory potential highlight vitamin D’s therapeutic value for inflammatory and autoimmune diseases. Further research is essential to determine optimal vitamin D dosing and its implications across diverse populations.


Keywords


Vitamin D, traditionally known for its role in bone health, is increasingly recognized as a crucial regulator of immune balance and inflammation. This review explores the mechanisms by which vitamin D influences both innate and adaptive immune responses,

Full Text:

PDF

References


. Megha KB, Joseph X, Akhil V, Mohanan P V. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Oct;91:153712.

. Ghaseminejad-Raeini A, Ghaderi A, Sharafi A, Nematollahi-Sani B, Moossavi M, Derakhshani A, et al. Immunomodulatory actions of vitamin D in various immune-related disorders: a comprehensive review. Frontiers in Immunology. 2023;14(July):1–16.

. Sirajudeen S, Shah I, Al Menhali A. A Narrative Role of Vitamin D and Its Receptor: With Current Evidence on the Gastric Tissues. International journal of molecular sciences. 2019 Aug;20(15).

. Hewison M. An update on vitamin D and human immunity. Clinical Endocrinology. 2012;76(3):315–25.

. Saponaro F, Saba A, Zucchi R. An update on vitamin d metabolism. International Journal of Molecular Sciences. 2020;21(18):1–19.

. Acar S, Özkan B. Vitamin D Metabolism. In: Özdemir Ö, editor. Vitamin D. Rijeka: IntechOpen; 2021. p. Ch. 1.

. Bikle DD. Vitamin D: Production, Metabolism and Mechanisms of Action. South Dartmouth (MA): MDText.com,Inc; 2020. 1–109 p.

. Bikle DD. Vitamin D: Newer concepts of its metabolism and function at the basic and clinical level. Journal of the Endocrine Society. 2020;4(2):1–20.

. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiological Reviews. 2015;96(1):365–408.

. Li D, Jeffery LE, Jenkinson C, Harrison SR, Chun RF, Adams JS, et al. arthritis. J Steroid Biochem Mol Biol. 2020;187:1–8.

. Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013;5(7):2502–21.

. Carlberg C. Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes. Frontiers in Immunology. 2019;10(September).

. Fernandez GJ, Ramírez-Mejía JM, Urcuqui-Inchima S. Vitamin D boosts immune response of macrophages through a regulatory network of microRNAs and mRNAs. The Journal of Nutritional Biochemistry. 2022;109:109105.

. L Bishop E, Ismailova A, Dimeloe S, Hewison M, White JH. Vitamin D and Immune Regulation: Antibacterial, Antiviral, Anti-Inflammatory. JBMR plus. 2021 Jan;5(1):e10405.

. Sadeghi K, Wessner B, Laggner U, Ploder M, Tamandl D, Friedl J, et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. European journal of immunology. 2006 Feb;36(2):361–70.

. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006 Mar;311(5768):1770–3.

. Charoenngam N, Holick MF. Immunologic effects of vitamin d on human health and disease. Nutrients. 2020;12(7):1–28.

. Penna G, Adorini L. 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. Journal of immunology (Baltimore, Md : 1950). 2000 Mar;164(5):2405–11.

. Daryabor G, Gholijani N, Kahmini FR. A review of the critical role of vitamin D axis on the immune system. Experimental and Molecular Pathology. 2023;132–133(February):104866.

. Hafkamp FMJ, Taanman-Kueter EWM, van Capel TMM, Kormelink TG, de Jong EC. Vitamin D3 Priming of Dendritic Cells Shifts Human Neutrophil-Dependent Th17 Cell Development to Regulatory T Cells. Front Immunol [Internet]. 2022 Jul 7 [cited 2025 Apr 16];13. Available from: https://pubmed.ncbi.nlm.nih.gov/35874744/

. Griffin MD, Lutz W, Phan VA, Bachman LA, McKean DJ, Kumar R. Dendritic cell modulation by 1α,25 dihydroxyvitamin D3 and its analogs: A vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(12):6800–5.

. Pagare MS, Joshi H, Patil L, Kadam VJ. Human milk: Excellent anticancer alternative. Research Journal of Pharmacy and Technology. 2012;5(1):14–9.

. Cantorna MT, Yu S, Bruce D. The paradoxical effects of vitamin D on type 1 mediated immunity. Molecular aspects of medicine. 2008 Dec;29(6):369–75.

. Rolf L, Muris AH, Hupperts R, Damoiseaux J. Vitamin D effects on B cell function in autoimmunity. Annals of the New York Academy of Sciences. 2014 May;1317:84–91.

. Chen J, Liu H, Yang J, Chou KC. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino acids. 2007 Sep;33(3):423–8.

. Umar M, Sastry KS, Chouchane AI. Role of vitamin D beyond the skeletal function: A review of the molecular and clinical studies. International Journal of Molecular Sciences. 2018;19(6):1–28.

. Heine G, Niesner U, Chang HD, Steinmeyer A, Zügel U, Zuberbier T, et al. 1,25-dihydroxyvitamin D(3) promotes IL-10 production in human B cells. European journal of immunology. 2008 Aug;38(8):2210–8.

. Arnson Y, Itzhaky D, Mosseri M, Barak V, Tzur B, Agmon-Levin N, et al. Vitamin D inflammatory cytokines and coronary events: a comprehensive review. Clinical reviews in allergy & immunology. 2013 Oct;45(2):236–47.

. Matyjaszek-Matuszek B, Lenart-Lipińska M, Woźniakowska E. Clinical implications of vitamin D deficiency. Prz Menopauzalny [Internet]. 2015 [cited 2025 Apr 16];14(2):75–81. Available from: https://pubmed.ncbi.nlm.nih.gov/26327893/

. Gaudet M, Plesa M, Mogas A, Jalaleddine N, Hamid Q, Al Heialy S. Recent advances in vitamin D implications in chronic respiratory diseases. Respir Res [Internet]. 2022 Dec 1 [cited 2025 Apr 16];23(1). Available from: https://pubmed.ncbi.nlm.nih.gov/36117182/

. Yin K, Agrawal DK. Vitamin D and inflammatory diseases. J Inflamm Res [Internet]. 2014 May 29 [cited 2025 Apr 16];7(1):69–87. Available from: https://pubmed.ncbi.nlm.nih.gov/24971027/

. Cutuli SL, Cascarano L, Tanzarella ES, Lombardi G, Carelli S, Pintaudi G, et al. Vitamin D Status and Potential Therapeutic Options in Critically Ill Patients: A Narrative Review of the Clinical Evidence. Diagnostics (Basel) [Internet]. 2022 Nov 1 [cited 2025 Apr 16];12(11). Available from: https://pubmed.ncbi.nlm.nih.gov/36359561/

. Anggraini, D., Hasni, D., & Amelia, R. (2022). Pathogenesis of sepsis. Scientific Journal, 1(4), 334-341.

. Anggraini, D., Maani, H., & Rofinda, Z. D. (2018). Coagulation activity and D-dimer in sepsis patients. Indonesian journal of clinical pathology and medical laboratory, 24(2), 151-154.

. Annisa, Z. D., Lestari, A. P., & Anggraini, D. (2025). Hubungan Status Gizi dengan Kejadian Anemia pada Remaja. Scientific Journal, 4(2), 54-62.




DOI: https://doi.org/10.33854/heme.v7i2.1699

DOI (PDF): https://doi.org/10.33854/heme.v7i2.1699.g611

Refbacks

  • There are currently no refbacks.


Creative Commons License   Health and Medical Journal This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.