Pemberian Dosis Tinggi D-galactose Jangka Pendek secara Intraperitoneal untuk Menginduksi Proses Aging pada Tikus Jantan

Ronald Winardi Kartika, Veronika Maria Sidharta, Tena Djuartina, Kris Herawan Timotius, Chyntia Retna Sartika, Ignatio Rika

Abstract


Pendahuluan: Injeksi D-galaktosa (D-gal.i.p.) intraperitoneal yang dapat mempercepat penuaan telah digunakan untuk mengembangkan model penuaan. Penelitian sebelumnya menggunakan D-galaktosa jangka panjang selama 4 minggu untuk menginduksi penuaan pada mencit menimbulkan kesulitan waktu dan biaya pengobatan. Para peneliti sedang mencoba mencari tahu apakah pemberian D-gal dosis tinggi dalam jangka pendek. aku p. pada tikus mampu menginduksi tanda-tanda signifikan yang mirip dengan penuaan alami, yaitu peningkatan stres oksidatif dan myostatin. Tujuan dari penelitian ini adalah untuk mengetahui jalur penuaan otot pada tikus akibat pemberian D-galaktosa dosis tinggi dalam waktu singkat. Metode: Rancangan penelitian studi eksperimen, in vivo, dilakukan di laboratorium terpadu FKIK Universitas Katolik Atma Jaya Jakarta menggunakan 22 ekor tikus Sprague Dawley, jantan, umur 6-12 minggu, berat 200-350 gram. Sebelas ekor tikus diinduksi intraperitoneal (G-ip) D-galaktosa 300 mg/kg/hari selama 7 hari. 11 ekor tikus sisanya diinduksi dengan NaCl 0,9% i.p (N-ip). Pada penelitian ini pengukuran berat badan, lingkar gastrocnemius, CRP dan kadar myostatin blood elisa dibandingkan antara hari ke 7 dan hari ke 0 untuk melihat efek sistemik injeksi D. Galaktosa. Data dianalisis menggunakan SPSS versi 20. Hasil: Pemberian D-gal jangka pendek. i.p secara signifikan meningkatkan peradangan sistemik. dan tingkat myostatin. Pada kelompok perlakuan terjadi peningkatan aktivitas superoksida dismutase meskipun lebih rendah dibandingkan NaCl 0,9% i.p. kelompok. Kesimpulan: Dosis Tinggi Waktu singkat D-gal. injeksi mungkin membuat penuaan alami yang dapat berkembang pada tikus paling cepat satu minggu.


Keywords


Intra Peritoneal D-Galactosa, stres oksidatif, superoksida dismutase, peradangan

Full Text:

PDF

References


. J. Lexell, C.C. Taylor, M. Sjostrom, What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men, J Neurol Sci, 1988; 84 (2) :275-294

. I. Rosenberg Symposium: sarcopenia: diagnosis and mechanismsJ Nutr, 1997; 127 : 990- 991

. C. Beaudart, M. Zaaria, F. Pasleau, J.Y. Reginster, O. Bruyere Health outcomes of sarcopenia: a systematic review and meta-analysis PloS One, 2017; 12 (1): 12-18

. Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL. Fat tissue, aging, and cellular senescence. Aging Cell. 2010 Oct;9(5):667-84.

. Carnac G, Vernus B, Bonnieu A. Myostatin in the pathophysiology of skeletal muscle. Curr Genomics. 2007 Nov;8(7):415-22.

. Han HQ, Mitch WE. Targeting the myostatin signaling pathway to treat muscle wasting diseases. Curr Opin Support Palliat Care. 2011 Dec;5(4):334-41.

. A. Rebbapragada, H. Benchabane, J. L. Wrana, A. J. Celeste, L. Attisano, Myostatin Signals through a Transforming Growth Factor β-Like Signaling Pathway To Block Adipogenesis, Mol Cell Biol. 2003 Oct; 23(20): 7230–7242

. Fatemi, I. et.al. Protective effect of metformin on D-galactose-induced aging model in mice, Iranian Journal of Basic Medical Sciences, 2018;21(1),19–25.

. Thornton, S. N. Increased Hydration Can Be Associated with Weight Loss, Frontiers in Nutrition, 2016;3: 1–8. McPherron, A. C., Lawler, A. M., and Lee, S. J.. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387, 83–90

. Sharma, M., Kambadur, R., Matthews, K. G., Somers, W. G., Devlin, G. P., Conaglen, J. V., et al.. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J. Physiol. 1999, 180, 1–9.

. Zhao, H. et.al. Antioxidant effects of compound walnut oil capsule in mice aging model induced by D-galactose, Food and Nutrition Research,2018; 62:1–10.

. Chen, P., Chen, F. and Zhou, B. Leonurine ameliorates Dgalactose-induced aging in mice through activation of the Nrf2 signalling pathway, Aging Albany NY. 2019; 11(18):1–8

. Azman, K.F. dan Zakaria, R. Dgalactose-induced accelerated aging model: an overview. Biogerontology. 2019;20 (6):763- 782.

. Bashir H, Ahmad Bhat S, Majid S, Hamid R, Koul RK, Rehman MU, Din I, Ahmad Bhat J, Qadir J, Masood A. Role of inflammatory mediators (TNF-α, IL-6, CRP), biochemical and hematological parameters in type 2 diabetes mellitus patients of Kashmir, India. Med J Islam Repub Iran. 2020; 12:34–38.

. Konermann, S. 2019. Oxidative stress biomarkers of brain damage: hyperacute plasma f2-isoprostane predicts infarct growth in stroke. Physiology & Behavior. 173(3)(1):665–676

. Ji, M., Su, X., Liu, J., Zhao, Y., Li, Z., Xu, X., Nashun, B. Comparison of naturally aging and D-galactose induced aging model in beagle dogs. Experimental and Therapeutic Medicine. 2017; 14(6), 5881– 5888.

. Mohammadi, E., Mehri, S., Bostan, H. B., & Hosseinzadeh, H. (2018). Protective effect of crocin against d-galactose-induced aging in mice. Avicenna J Phytomed. 8(1), 14–23.

. Legiawati L. The Role of Oxidative Stress, Inflammation, and Advanced Glycation End Product in Skin Manifestations of Diabetes Mellitus. Curr Diabetes Rev. 2022;18(3):1-6

. Hadzi-Petrushev N, Stojkovski V, Mitrov D, Mladenov M. D-galactose induced inflammation lipid peroxidation and platelet activation in rats. Cytokine. 2014;69(1):150–153

. Shwe T, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp Gerontol. 2018 Jan;101:13-36

. Consitt LA, Clark BC. The Vicious Cycle of Myostatin Signaling in Sarcopenic Obesity: Myostatin Role in Skeletal Muscle Growth, Insulin Signaling and Implications for Clinical Trials. J Frailty Aging. 2018;7(1):21-27

. Attie KM, Borgstein NG, Yang Y, Condon CH, Wilson DM, Pearsall AE, Kumar R, Willins DA, Seehra JS, Sherman ML: A single ascending-dose study of muscle regulator ACE-031 in healthy volunteers. Muscle Nerve 2013;47:416-423

. Wilkes JJ, Lloyd DJ, Gekakis N: Loss-of-function mutation in myostatin reduces tumor necrosis factor-α production and protects liver against obesity-induced insulin resistance. Diabetes 2009;58:1133-1143.

. Tu P, Bhasin S, Hruz PW, Herbst KL, Castellani LW, Hua N, Hamilton JA, Guo W: Genetic disruption of myostatin reduces the development of proatherogenic dyslipidemia and atherogenic lesions in Ldlr null mice. Diabetes 2009;58:1739-1748.

. El Shafey, N., Guesnon, M., Simon, F., Deprez, E., Cosette, J., Stockholm, D., et al. (2016). Inhibition of the myostatin/Smad signaling pathway by short decorin-derived peptides. Exp. Cell Res. 341, 187–195.

. Busquets S, Toledo M, Orpí M, Massa D, Porta M, Capdevila E, Padilla N, Frailis V, López-Soriano FJ, Han HQ, Argilés JM. Myostatin blockage using actRIIB antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle wasting and physical performance. J Cachexia Sarcopenia Muscle. 2012 Mar;3(1):37-43.

. Anggraini, D., & Putra, I. A. (2022). Imunopatogenesis Karsinoma Hepatoselular. Scientific Journal, 1(4), 318-324.




DOI: https://doi.org/10.33854/heme.v5i3.1370

Refbacks

  • There are currently no refbacks.


Creative Commons License   Health and Medical Journal This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.