PENGGUNAAN MEMBRAN POLY(LACTIC-CO-GLYCOLIC) ACID (PLGA) YANG DIPERKUAT OLEH NANOSELULOSA UNTUK PROSEDUR GUIDED BONE REGENERATION (GBR)

Nathasya Kurniawati, Yunia Dwi Rakhmatia, Lisda Damayanti

Abstract


Introduction: Poly (lactic-co-glycolic acid) (PLGA) was developed as a bone regeneration membrane due to its biocompatibility and biodegradability, despite its inherent lack of mechanical strength. One method of enhancing the mechanical strength of PLGA is through its combination with nanocellulose, which possesses high mechanical strength. Nevertheless, nanocellulose exhibits rigidity that renders it challenging to manage in a clinical setting. Aim: The objective of this study was to ascertain the potential of PLGA membranes reinforced by nanocellulose as a bone regeneration material. Method: A review of the literature was conducted through online databases PubMed, Science Direct, SCOPUS, and MDPI for the past 10 years. Result: The results of the search yielded four articles discussing the use of synthetic polymers, particularly PLGA reinforced by nanocellulose as a membrane. Of the four articles identified, two solely addressed the biological properties of the membrane, one solely the mechanical properties, and one reported both. The articles found support the theory regarding the advantages and disadvantages of PLGA and nanocellulose as membranes. Conclusion: The utilisation of PLGA membranes reinforced by nanocellulose merits further investigation, as these membranes demonstrate the potential to satisfy the design criteria for a mechanical barrier membrane in bone regeneration.

Keywords


Guided bone regeneration (GBR), membran, nanoselulosa, polimer, Poly(lactic-co-glycolic) acid (PLGA)

References


Liu J, Kerns DG. Mechanisms of Guided Bone Regeneration: A Review. Open Dent J. 2014;8(1):56–65.

Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Current barrier membranes: Titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res. 2013;57(1):3–14.

Caballe´-Serrano J, Munar-Frau A, Ortiz-Puigpelat O, Soto-Penaloza D, Pen˜arrocha M, Herna´ndez-Alfaro F. On the search of the ideal barrier membrane for guided bone regeneration. J Clin Exp Dent. 2018;10(5):e477–83.

Aprile P, Letourneur D, Simon-Yarza T. Membranes for Guided Bone Regeneration: A Road from Bench to Bedside. Adv Healthc Mater. 2020;9:1-24.

Lanao RPF, Jonker AM, Wolke JGC, Jansen JA, Van Hest JCM, Leeuwenburgh SCG. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng - Part B Rev. 2013;19(4):380–90.

Lee SW, Kim SG. Membranes for the Guided Bone Regeneration. Maxillofac Plast Reconstr Surg. 2014 Nov 30;36(6):239–46.

Gentile P, Chiono V, Carmagnola I, Hatton P V. An overview of poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–59.

Kawasaki T, Ohba S, Nakatani Y, Asahina I. Clinical study of guided bone regeneration with resorbable polylactide-co-glycolide acid membrane. Odontology [Internet]. 2018;106(3):334–9.

Furuhashi A, Rakhmatia YD, Ayukawa Y, Koyano K. Titanium membrane layered between fluvastatin-loaded poly (lactic-co-glycolic) acid for guided bone regeneration. Regen Biomater. 2022;9:1-11.

Kumar A, Han SS. Efficacy of bacterial nanocellulose in hard tissue regeneration: A review. Materials. 2021;14:1-28.

Bacakova L, Pajorova J, Tomkova M, Matejka R, Broz A, Stepanovska J, et al. Applications of nanocellulose/nanocarbon composites: Focus on biotechnology and medicine. Nanomaterials. 2020;10(2):1–32.

Khan S, Siddique R, Huanfei D, Shereen MA, Nabi G, Bai Q, et al. Perspective Applications and Associated Challenges of Using Nanocellulose in Treating Bone-Related Diseases. Front Bioeng Biotechnol. 2021;9:1–19.

Nicu R, Ciolacu F, Ciolacu DE. Advanced functional materials based on nanocellulose for pharmaceutical/medical applications. Pharmaceutics. 2021;13(8).

Saska S, Teixeira LN, Tambasco De Oliveira P, Minarelli Gaspar AM, Lima Ribeiro SJ. Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J. Mater. Chem. 2012;22:22102–22112.

Lee SH, An SJ, Lim YM, Huh JB. The Efficacy of Electron Beam Irradiated Bacterial Cellulose Membranes as Compared with Collagen Membranes on Guided Bone Regeneration in Peri-Implant Bone Defects. Materials (Basel). 2017;10(9):1018.

Zhang H, Wang J, Wang K, Xu L. A bilayered PLGA/multiwall carbon nanotubes/bacterial cellulose composite membrane for tissue regeneration of maxillary canine periodontal bone defects. Mater Lett. 2018;212:118–21.

Mo Y, Guo R, Liu J, Lan Y, Zhang Y, Xue W, et al. Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals. Colloids Surfaces B Biointerfaces. 2015;132:177–84.

Yang Z, Li X, Si J, Cui Z, Peng K. Morphological, Mechanical and Thermal Properties of Poly(lactic acid) (PLA)/Cellulose Nanofibrils (CNF) Composites Nanofiber for Tissue Engineering. J Wuhan Univ Technol Mater Sci Ed. 2019;34(1):207–15.

Zheng Z, Liu Y, Huang W, Mo Y, Lan Y, Guo R, et al. Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing. Artif Cells, Nanomedicine Biotechnol. 2018;46:493–501.

Hoornaert A, D’Arros C, Heymann MF, Layrolle P. Biocompatibility, resorption and biofunctionality of a new synthetic biodegradable membrane for guided bone regeneration. Biomed Mater. 2016;11(4):1-12.

Gupta S, Gopalkrishna P, Nayak UY, Ginjupalli K, Hrishi TS, Chandrashekar C, et al. Simvastatin in polymer bioscaffold for bone regeneration. An in vitro and in vivo analysis. Stomatologija. 2021;23(4):114–20.

Wei YW, Sayed SM, Zhu WW, Xu KF, Wu FG, Xu J, et al. Antibacterial and Fluorescence Staining Properties of an Innovative GTR Membrane Containing 45S5BGs and AIE Molecules In Vitro. Nanomaterials. 2022;12(4).

Higuchi J, Fortunato G, Woz´niak B, Chodara A, Domaschke S, Męczyn´ska-Wielgosz S, et al. Polymer membranes sonocoated and electrosprayed with nano-hydroxyapatite for periodontal tissues regeneration. Nanomaterials. 2019;9(11).

Queiro´s EC, Pinheiro SP, Pereira JE, Prada J, Pires I, Dourado F, et al. Hemostatic Dressings Made of Oxidized Bacterial Nanocellulose Membranes. Polysaccharides. 2021;2(1):80–99.

Piaia L, Pittella CQP, De Souza SS, Berti FV, Porto LM. Incorporation of Aloe vera extract in bacterial nanocellulose membranes. Polimeros. 2022;32(1).

Antolí´n-Cero´n VH, Gonza´lez-Lo´pez FJ, Astudillo-Sa´nchez PD, Barrera-Rivera KA, Martí´nez-Richa A. High-Performance Polyurethane Nanocomposite Membranes Containing Cellulose Nanocrystals for Protein Separation. Polymers (Basel). 2022;14(4).

Halib N, Perrone F, Cemazar M, Dapas B, Farra R, Abrami M, et al. Potential applications of nanocellulose-containing materials in the biomedical field. Materials (Basel). 2017;10(8):1–31.




DOI: https://doi.org/10.33854/jbd.v11i1.1542

DOI (PDF (Bahasa Indonesia)): https://doi.org/10.33854/jbd.v11i1.1542.g537

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Nathasya Kurniawati, Yunia Dwi Rakhmatia, Lisda Damayanti

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.