EFEKTIVITAS PENGGUNAAN APLIKASI PASTA GIGI YANG DIFORMULASI ZINC DAN SUPLEMEN ORAL ZINC SETELAH SCALLING DAN ROOT PLANNING TERHADAP KADAR TISSUE INHIBITOR OF MATRIX METALLOPROTEINASE-1 SALIVA PADA GINGIVITIS

Fildzah Nurul Fajrin, Haria Fitri, Nila Kasuma, Netti Suharti

Abstract


Pendahuluan: Terapi pertama gingivitis adalah scaling and root planning (SRP). Terapi ini berfungsi untuk menghilangkan plak dan kalkulus penyebab inflamasi gingiva, namun SRP memiliki keterbatasan yaitu tidak dapat mengeliminasi seluruh bakteri patogen periodontal pada area yang sulit diakses saat instrumentasi. Oleh karena itu dibutuhkan terapi tambahan seperti pemberian imunomodulator untuk meningkatkan keberhasilan SRP. Zinc telah dikenal sebagai imunomodulator. Unsur ini merupakan katalisator dari enzim yang berperan dalam proses degradasi kolagen dan penyembuhan gingivitis yaitu Tissue Inhibitor Matrix Metalloproteinase-1 (TIMP-1). Sebagai terapi penyembuhan gingivitis, zinc digunakan dalam bentuk suplemen (sistemik) dan sebagai bahan tambahan dalam pasta gigi (topikal). Penulis bertujuan untuk membandingkan efektifitas aplikasi zinc yang berbeda terhadap konsentrasi TIMP-1 pada saliva pasien gingivitis setelah scalling and root planning. Metode: Subjek penelitian adalah siswa siswa MAN 2 Padang yang menderita gingivitis sedang dan parah berdasarkan pemeriksaan Gingival Index dan bleeding on probing. Subjek terdiri dari 3 kelompok yaitu kelompok dengan aplikasi pasta gigi zinc citrate 2% setelah SRP (grup 1), kelompok SRP tanpa tambahan perlakuan (grup 2), dan kelompok suplementasi zinc sulfat 20 mg (grup 3) setelah SRP. Masing-masing kelompok terdiri dari 11 orang. Scalling and root planning dilakukan pada subjek yang terjaring. Pasta gigi dan suplemen zinc diberikan pada grup 1 dan 3 selama 14 hari. Setelah perlakuan, saliva subjek penelitian dikumpulkan dengan unstimulated method. Kadar TIMP-1 saliva dianalisis dengan metode ELISA di Laboratorium Biomedik FK UNAND. Analisa statistik dilakukan dengan software SPSS 17 dengan uji ANOVA dan Bonferroni.  Hasil: Terdapat perbedaan yang bermakna antar kelompok perlakuan (p<0.05). Kelompok yang paling menunjukkan peningkatan TIMP-1 yang signifikan adalah grup 1 (p< 0.05). Terdapat perbedaan signifikan antara grup 1 dengan grup 2. Tidak terdapat perbedaan yang bermakna antara grup 2 dengan grup 3, dan grup 1 dengan grup 3 (p>0.05). Simpulan: Penggunaan zinc secara topikal lebih efektif meningkatkan penyembuhan gingivitis setelah SRP dari pada penggunaan zinc secara sistemik.

 

Introduction: The first therapy of gingivitis is scaling and root planning (SRP). This therapy functions to remove plaque and calculus that cause gingival inflammation, but SRP has limitations that cannot eliminate all periodontal pathogenic bacteria in areas that are difficult to access when instrumentation. Therefore, additional therapy is needed such as immunomodulatory administration to increase the success of SRP. Zinc has been known as an immunomodulator. This element is a catalyst of enzymes that play a role in the process of collagen degradation and healing of gingivitis, namely Tissue Inhibitor Matrix Metalloproteinase-1 (TIMP-1). As a healing therapy for gingivitis, zinc is used as a supplement (systemic) and as an additive in toothpaste (topical). The authors aimed to compare the effectiveness of different zinc applications to TIMP-1 concentrations in the saliva of gingivitis patients after scaling and root planning. Methods: The research subjects were students of MAN 2 Padang who suffered from moderate and severe gingivitis based on gingival index and bleeding on probing examination. Subjects consisted of 3 groups, namely the group with the application of 2% zinc citrate toothpaste after SRP (group 1), SRP group without additional treatment (group 2), and zinc sulphate supplementation group 20 mg (group 3) after SRP. Each group consists of 11 people. Scaling and root planning were done on netted subjects. Toothpaste and zinc supplements were given in groups 1 and 3 for 14 days. After the treatment, the saliva of the research subjects was collected by an unstimulated method. TIMP-1 saliva content was analysed by the ELISA method in the Biomedical Laboratory of the UNAND FK. Statistical analysis was performed with SPSS 17 software with ANOVA and Bonferroni tests. Results: There were significant differences between treatment groups (p <0.05). The group that most showed a significant increase in TIMP-1 was group 1 (p <0.05). There were significant differences between group 1 and group 2. There were no significant differences between group 2 and group 3, and group 1 with group 3 (p> 0.05). Conclusion: Topical use of zinc is more effective at improving the healing of gingivitis after SRP than systemic use of zinc.


Keywords


Gingivitis; Zinc; TIMP-1; Scaling and Root Planning

References


Cekici, A. et al. 2014. Inflammatory And Immune Pathways In The

Pathogenesis Of Periodontal Disease. Periodontology 2000 64(1), pp. 57–80.

Sánchez, R. M. D. 2017. Clinical Study A Prospective, Double-Blind, Randomized, Controlled Clinical Trial in the Gingivitis Prevention with an Oligomeric Proanthocyanidin Nutritional Supplement 8 (12), pp. 11–14

Shaw, L. et al. 2016. Distinguishing The Signals Of Gingivitis And Periodontitis In Supragingival Plaque: A Cross-Sectional Cohort Study In Malawi, Applied And Environmental Microbiology. 82 (19) pp. 6057–6067.

Murakami, S. et al. 2018. Dental Plaque–Induced Gingival Conditions. Journal Of Clinical Periodontology 45 pp. S17–S27.

Uraz, A., B. Karaduman, and C. Sila. 2019. Ozone Application As Adjunctive Therapy In Chronic Periodontitis : Clinical , Microbiological And Biochemical Aspects. Science Direct 72(11):1535-44.

Reynolds EC. Calcium phosphate‐based remineralization systems: scientific evidence? Australian Dental Journal. 2008 Sep; 53 (3): 268-73.

Deore, G. D. et al. 2014. Herbal Anti-Inflammatory Immunomodulators As Host Modulators In Chronic Periodontitis Patients: A Randomised, Double-Blind, Placebo-Controlled, Clinical Trial pp. 71–78.

Knoell, Daren L. dan Liu Ming Jie. 2012. Impact of Zinc Metabolism on Innate Immune Function in the Setting of Sepsis. Int Z Vitam Ernahrungsforsch Beih 80 (4-5): 271–277

Gammoh, N. Z. and Rink, L. 2017. Zinc in infection and inflammation. Nutrients 31 (8): 671-9.

Goswami N and Sahai A. 2013. Structural Transformation in Nickel Doped Zinc Oxide Nanostructures. Materials Research Bulletin. 1; 48 (2): 346-51.

Yamaguchi M., M.N. Weitzmann. 2011. Zinc Stimulates Osteoblastogenesis And Suppresses Osteoclastogenesis By Antagonizing NF-Κb Activation. Molecular and Cellular Biochemistry. 355(1-2): 179.

de Morais, E. F. et al. 2018. Matrix Metalloproteinase-8 Levels In Periodontal Disease Patients: A Systematic Review. Journal of Periodontal Research 53(2), pp. 156–163.

Tüter, G., B. Kurtis and M. Serdar. 2002. Effects of Phase I Periodontal Treatment on Gingival Crevicular Fluid Levels of Matrix Metalloproteinase-1 and Tissue Inhibitor of Metalloproteinase-1. J Periodontol 73(May), pp. 487–493.

Rai, B., J. Kaur, R. Jain and S. Anand. 2010. Levels of Gingival Crevicular Metalloproteinases-8 And-9 In Periodontitis. The Saudi Dental Journal, 22(3), 129-131.

Krebs, N. F. 2000. Zinc and Health: Current Status and Future Directions Overview of Zinc Absorption and Excretion in the Human Gastrointestinal Tract 1(2) pp. 1374–1377.

Danielsen P.L., A.V.Holst , H.R. Maltesen, M.R. Bassi, P.J. Holst, K.M. Heinemeier, J. Olsen, C.C. Danielsen, S.S. Poulsen, L.N. Jorgensen, M.S. Ågren. Matrix Metalloproteinase-8 Overexpression Prevents Proper Tissue Repair. Surgery 1; 150 (5): 897-906.

Desarda H. and S. Gaikwad. 2013. Matrix Metalloproteinases and Implication in Periodontitis-A Short Review. J Dent Allied Sci 2 (2): 66-70.

Solomon L.A, B.A. Russell, D. Makar, N.G. Bérubé, F. Beier. 2013. Loss of ATRX does not confer susceptibility to osteoarthritis. PloS one. 2013 Dec 30; 8(12)

Bortolin R.H., B.J. Abreu, M.A. Ururahy, K.S. de Souza, J.F. Bezerra, M.B.Loureiro, F.S. da Silva, D.E. da Silva Marques, A.A. de Sousa Batista, G. Oliveira, and A.D.Luchessi. 2015. Protection against T1DM-induced bone loss by zinc supplementation: biomechanical, histomorphometric, and molecular analyses in STZ-induced diabetic rats. PloS one 1; 10 (5).

Balli U, B.O. Cetinkaya, G.C. Keles, Z.P. Keles, S. Guler, M.U. Sogut, Z. Erisgin. 2016. Assessment of MMP-1, MMP-8 and TIMP-2 in experimental periodontitis treated with kaempferol. Journal of Periodontal & Implant Science 1; 46 (2): 84-95.

Kim, S.A. and Cho, J.W., 2017. Gingivitis Reducing Effect of Dentifrices Containing Zinc Citrate. International Journal of Clinical Preventive Dentistry, 13 (4), pp. 217-222.

Popat, R.P., Bhavsar, N.V. and Popat, P.R., 2014. Gingival crevicular fluid levels of Matrix Metalloproteinase-1 (MMP-1) and Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) in periodontal health and disease. Singapore dental journal, 35, pp. 59-64.

Ghodpage, P. S., Gupta, M. and Kolte, R. A. 2014. Influence Of Phase I Periodontal Therapy On Levels Of Matrix Metalloproteinase 1 And Tissue Inhibitor Of Metalloproteinase 1. The Saudi Dental Journal 26(4), pp. 171–175.

Monya, M. et al. 2003. Increase of Zinc in the Level in Patients of TIMP-1 with Taste in Saliva Disorder by Oral Due Administration Deficiency to Zinc. J.Gerodontol 18, pp. 3–9.

Orbak, R. et al. 2007. Effects Of Zinc Deficiency On Oral And Periodontal Diseases In Rats. Journal Of Periodontal Research 78 (8) pp. 138–143.

Seyedmajidi, S. A. et al. 2014. Effect of zinc-deficient diet on oral tissues and periodontal indices in rats. International journal of molecular and cellular medicine, 3(2), 81.

Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K., and Librowski, T. 2017. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 25(1), 11-24.

Lichten, L. A., and R.J. Cousins. 2009. Mammalian zinc transporters: nutritional and physiologic regulation. Annual review of nutrition, 29, 153-176.

Sekler, I. et al. 2007 . Mechanism and Regulation of Cellular Zinc Transport. J Clin Periodontol 3 pp. 0–6.

Lansdown, A. B., Mirastschijski, U., Stubbs, N., Scanlon, E., and Ågren, M. S. 2007. Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound repair and regeneration, 15(1), 2-16.

Gibson, R. S., J.C. King and N. Lowe. 2016. A review of dietary zinc recommendations. Food and nutrition bulletin, 37 (4), 443-460.

Hambidge, K. M., Miller, L. V., Westcott, J. E., Sheng, X., and Krebs, N. F. 2010. Zinc bioavailability and homeostasis. The American journal of clinical nutrition, 91(5), 1478S-1483S.

Bell-Serrat, S., et al. (2014). Factors that affect zinc bioavailability and losses in adult and elderly populations. Nutrition reviews, 72(5), 334-352.

Milne, D. B., and Johnson, P. E. 1993. Effect of changes in short-term dietary zinc intake on ethanol metabolism and zinc status indices in young men. Nutrition research, 13(5), 511-521.

De Souza, A. P., Gerlach, R. F., and Line, S. R. P. 2000. Inhibition of human gingival gelatinases (MMP-2 and MMP-9) by metal salts. Dental Materials, 16(2), 103-108.

Fatima, T., Rahim, Z.B.H.A., Lin, C.W. and Qamar, Z., 2016. Zinc: A precious trace element for oral health care. J Pak Med Assoc 66(8), pp.1019-1023

Joshi, D., Garg, T., Goyal, A. K., and Rath, G. 2016. Advanced drug delivery approaches against periodontitis. Drug delivery, 23 (2), 363-377.

Mombelli, A., and Samaranayake, L.P. 2004. Topikal and systemic antibiotics in the management of periodontal diseases. International dental journal, 54(1), 3-14.

Kaminsky M.V dan J.L. Mendoza. 2018. Considerations Regarding Zinc Supplements in Micronutrient Deficient Nursing Home Patients pp. 1–8.




DOI: https://doi.org/10.33854/jbd.v6i2.266

DOI (PDF (Bahasa Indonesia)): https://doi.org/10.33854/jbd.v6i2.266.g222

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 B-Dent: Jurnal Kedokteran Gigi Universitas Baiturrahmah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.